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A b s t r a c t  

A generalization of Wegscheider's condition concerning equilibrium constants 
in chemically reacting systems is formulated, which is then proved to be a necessary 
and sufficient condition for detailed balancing. In order to include a large multitude 
of rate la\~ s, a generalized mass action kinetics is considered which comprises usual 
mass action kinetics and all reversible enzyme kinetics and which is consistent with 
basic postulates of irreversible thermodynamics for ideal mixtures. Reaction systems 
of arbitrary stoichiometry are considered. They may contain reactants with fixed 
concentrations, as is characteristic for models of biochemical reaction networks. 
Existence, uniqueness, and global asymptotic stability of equilibrium states for 
reaction systems endowed with generalized mass action kinetics are proved. Using 
these results, the generalized Wegscheider condition is shown to be a sufficient 
criterion for the applicability of the quasi-steady-state approximation. 

1. I n t r o d u c t i o n  

A network of (bio)chemical reactions is called detailed balanced if in every 
steady state all reaction rates vanish and if at least one steady state is accessible for th_is 
network [1 ]. Closed reaction systems are always detailed balanced due to the principle 
of microreversibility [2]. In biochemistry and chemical engineering, however, usually 
open reaction systems are studied. Such systems often show a time behavior which, 
after some transients, settles down to be stationary. These steady states need not 
coincide with thermodynamic equilibrium. 
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In section 3 of  this paper, a necessary and sufficient condition for the identity 
of steady and equilibrium states is derived (cf. eq. (3.22)) which turns out to be a 
generalization of the well-known Wegscheider condition which is usually given in the 
form 

I-I (ki/k_i) = 1, (1.1) 
i 

where k i and k_i are the rate constants of  forward and reverse reactions, respectively, 
around a cycle of monomolecular reactions with linear rate laws [3; 4, p. 26]. For the 
history of formulation and resolution of Wegscheider's paradox, the reader is referred 
to Hearon [3]. 

In the present paper, reaction systems of arbitrary stoichiometry are considered 
whJch can eren encompass "external species" [1,5], i.e. reactants with fixed concen- 
trations. In many kinetic models of reaction networks, especially in models of bio- 
chemical systems, the concentrations of some reactants (e.g. substrates, products, or 
co-factors) are deemed to be time-invariant because of a large supply or regulation of 
infusion or effusion. Since these reactants are not taken into account in stoichio- 
metric matrices, systems with external species are sometimes called "nonstoichio- 
metric" networks [6], in the sense that they apparently violate conservation of 
marter. 

The restrictive assumption of linear rate laws is relaxed in such a way that any 
reversible reaction kinetics is admitted which can be stated in terms of the generalized 
mass action kinetics, defined for ideal mixtures in section 2. The restriction to 
reversible reactions, that is, to reactions with finite equilibrium constants, means no 
loss of generality inasmuch as one can assume all reactions to be reversible from a 
thermodynamic point of  view. On the other hand, the irreversibility assumption is, 
for some reactions, offen used in kinetic models since it simplifies the governing 
differential equation systems. 

False equilibfia, i.e. states in which all rates vanish but at least one affinity 
does not, are excluded from investigation by restricting it to non-zero concentrations. 
Since, generally, true chemical equilibria are globally asymptotically stable, this 
stability property was even used as an axiom in the theory of chemical reäction 
systems [2]. There exist, however, some exceptions, e.g. certain reactions in regular 
solutions [7]. Therefore, we show using Lyapunov's second method in section 4 that 
equilibrium states of reaction systems with generalized mäss action kinetics are 
globally asymptotically stable within the reaction simplex determined by conserva- 
tion quantities. 

Throughout, we in particular refer to biochemical systems, but the results 
apply to any chemically reacting mixture provided that it can be described by the 
formalism used in this paper. Since biochemical reaction networks are charactefized by 
a permanent exchange of matter with their surroundings, equilibrium states seem not 
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to be relevant to them. However, many biochemical systems show the phenomenon of 
time hierarchy, i.e. the separation of time constants [4,8]. Although subsisting in non- 
equilibrium, such systems can contain subnetworks of very fast reactions which, after 
a negligibly short time period, attain a quasi-equilibrium in the sense thät their 
affinities nearly vanish. This will be formulated more exactly in section 5. The variables 
of fast subsystems are usually eliminated by the quasi-steady-state approximation 
[4 ,8 -12]  which is justified, however, only if the considered steady state of the fast 
subsystem is asymptotically stable. This requirement is always met if steädy state and 
equilibrium coincide so that the generalized Wegscheider condition can serve as a 
sufficient criterion for the quasi-steady-state approximation to be applicable. 

2. S y s t e m s  o f  r eac t ions  o b e y i n g  a genera l i zed  mass  ac t i on  k ine t ics  

Throughout this paper we use, in addition to usual notations of matrix algebra, 
the symbols explained in what follows. Ii, Oi, and Oi, I (i, j = 1 , 2 , . . .  ) denote the i x i 
identity matrix, the i-dimensional null vector, and the i x j null matrix, respectively. If 
all the components of an i-vector J( are positive (non-negative), we write X > 0 i 
(X ~> 0i). tR { denotes the positive orthant {X E ~ i .  X > 0i}. (diag X) stands for 
the diagonal matrix containing the components of vector X as diagonal elements. 
Scalar functions of vectors are defined to be the vectors of the functions of com- 
ponents, e.g. in X = (ln X~, . . . , In X n)T, where the superscript T denotes transposition 
of vectors or matrices. 

Consider a system of I" chemical reactions with net reaction rates vj forming the 
vector 

v = ( v , ,  v2 . . . .  , vr) T. (2.1) 

Let Pi denote the extemal species and m be their number. For substances with varying 
concentrations, we will use the term "internal species" and the symbol X i (i = 1 , . . . ,  n). 
For simplicity's sake, let X i (Pi) denote the concentrations of internal (external) 
species as well as the substances themselves. The concentrations X i are gathered into 
an 1»vector X. Let C be the stoichiometric matrix of the reaction system considered, 
and cij its elements. Under the assumption that the concentrations of metabolites are 
spatially homogeneous, the time behavior X( t )  can be describëd by the ordinary 
differential equation system 

f(  = C V ( X )  (2.2) 

(cf. [5,7] ). We now specify the functions vj(X)  in such a way that their property to 
represent rate laws of (bio)chemical reactions is taken into account. Throughout, we 
use the general expression 
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where 

(2.3) 

?H 

"qj = q] / H Pi eij , (2.4) 
i=1 

with qi being the equilibrium constant of reaction j and eil denoting the elements of 
the stoichiometric matrix of the external metabolites. Since all Pi are constant, ~j can 
be interpreted as an apparent equilibrium constant with respect to the concentrations 
Xi. The expression in square brackets in (2.3) equals, apart from a constant factor, 
the affinity Aj of reaction j in ideal gases or solutions [13, p. 34]. In order to ensure 
the existence of A j, it is necessary to exclude zero concentrations. The loss of 
generality due to this restriction will be elucidated in section 4. 

The kinetics (2.3) can be derived from postulates of (nonlinear) irreversible 
thermodynamics if coupling effects (i.e. dependences of fluxes wj on forces A k with 
k ¢ j )  are neglected (cf. [13, ch. 3.1]). In accordance with these postulates, the 
functions Fj(AI) are assumed to have the properties 

B(A i )  = 0 if Aj = 0 (2.5) 

and 

I I I " j (A j )  • l " j (A j )  i fand only if A i > Aj  . (2.6) 

The function Gj(X) can express nonlinearities caused, for example, by catalytic 
effects. It can be assumed to be positive for any X > On. 

Rate laws derived from kinetic considerations can be formulated in a general 
form to use 

Fi ( ij u - X il ,7 (2.7) v i ( x )  = x )  q i . =  .= .= , 

where 

l - c i j  if cq < 0 
q~ (2.8) ! 0 if cq >~ 0 

and 

.:{ cij cq if % > 0 (2.9) 
0 if  cij ~ O. 
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el) and ei~ are calculated from eq analogously to (2.8)and(2.9), and F / (X) i s  a positive 
function. With the help of the definitions (2.4) and 

m 

8(x) =F/X) .I-I Pp, (2.1o) 
I = l  

(2.7) can be written as 

v/(X) = ~ ( X ) [ q ' l i = ,  ~ xC'-I - i=1 f i  X[O']. (2.11) 

All rate laws of enzymatic reactions (steady state as weil as equilibrium models) can 
be described by (2.11) [11]. In the case of irreversible reactions, the orientations of 
reactions and, thus, the signs of the elements cq of C have to be chosen in such a way 
that ~j = 0 rather than ~j ~ oo in order to ensure the existence of the r.h.s, of(2.11). 

If only reversible reactions and non-vanishing concentrations are considered, 
the kinetics arising from (2.11) is a special case of (2.3), as can immediately be seen by 
choosing 

and 

P. i (A i )  = A.i (2.12) 

where 

G/X) = ~(x)äj(x), 

~j(x) = 

tl tl 

tl 

X «  
i = 

(2.13) 

tl 

if [--I X cq 4: "qi (2.14a) 
i = 1  

tl 

if I-I  x cq : q j .  (2.14b) 
i = 1  

The r.h.s, of (2.14a) has a discontinuity across the manifold 

n 

FI x?~ = ;i 
i = 1  

which is removed by the definition (2.14b). As Gi(X) is assumed to have no zeroes, 
we have, by virtue of (2.5) and (2.6), 
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n 

v](X) = 0 i f andon ly i f  H X[ü = ~], (2.15) 
i = 1  

which is the wetl-known law of mass action. The usual mass action kinetics 

n ?1 

- H « -  ~ 1--I « + vj(X) = k/ ,s, - ü,  (2.16) 
i = 1  i = 1  

where k] and k/are the rate constants of forward and reverse reactions, respectively, 
is not, of course, the only kinetics obeying this law. Since (2.16) is a special case of 
kinetics (2.3) provided that neither k~ nor k] vanishes, we term (2.3)~ "generalized 
mass action kinetics". Under the mentioned condition concerning k] and k], it also 
cómprises the "general mass action kinetics" considered by Horn and Jackson [1] 
which admits matrices C disobeying the law of mass conservation or having 

- +  +._ 

non-integer elements, and which does not restrict k] and k i to satisfy the principle 
of microreversibility. That kinetics, however, cannot allow for allosteric, competitive, 
cooperative, and other nonlinear effects, which are often observed in biochemical 
kinetics and whJch can be described by the functions F](X) in (2.11) or Gi(X ) 
in (2.3). 

3. A generalization of Wegscheider's condition 

3.1, GENERAL THEORY 

In steady states, eq. (2.2) takes the form 

CV(X*) = On, (3.1) 

where the asterisk denotes steady-state conditions. Of course, eq. (3.1) is fulfilled if 

v(x*) = 0r.  (3.2)  

We now investigate under which conditions (3.2) follows from (3.1). Let 

c = rank(C). (3.3) 

We rearrange the rows and columns of C in such a way that this matrix can be 
partitioned into four submatrices: 

( C1 C2 ) (3.4) 
C = C3 C4 , 
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where C 1 is a nonsingular c x c matrix. Since the rows of  (C 3 C 4) are then linearly 
dependent on the rows o f ( C  1 C2), eq. (3.1) is equivalent to 

(C 1 C2) V ( X )  = O«. (3.5) 

Now we can disünguish the two cases c = r and c < r : 

(i) c = r. Equation (3.5) reads C 1 V = 0r, which immediately implies 
eq. (3.2) due to the regularity of  C 1 . 

(ii) c < r. In this case, there exist r - c linear dependences between the 
columns of  C, which can be written as follows 

CX = 0n, r _ « ,  (3.6) 

with X being an r x (r - c) matrix with rank r - c. In accordance with the decom- 
position (3.4) of  C, X can be chosen to be 

X = [r -c  ' (3.7) 

where 

X o = - C [ 1 C 2  . (3.8) 

C~" 1 exists because of  the regularity of  C1. 
We now define the following vectors 

G ( X )  = ( G I ( X ) ,  . . , G r ( X ) )  T (3.9) 

,a = ( A 1 , . .  , a t )  T (3.10) 

1-'(A) = (1`1 ( A ~ ) ,  . . ,  Fr(A t ) )  x (3.11) 

so that  we can write eq. (2.3) in the form 

V ( X )  = [diag G(X)]  1`(ln ~ - C T In X).  (3.12) 

Since all P](A]) are monotonic  increasing functions, there exist inverse functions 
1-'/-1(.) which we can combine with the vector I ' - 1 ( . ) .  Thus, we can transform 

eq. (3.12) into 

In ~ - C T ha X = 1"-1 { [diag G(X)]  -1 V(X)}.  (3.13) 
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Multiplying this equation by 

VTln~ " = v T p  -1 { 

r 

i= ~'~ r?l(v;aJ), 

V T from the left, one obtains in the steady state 

[diag G ( X ) ]  V(X)} (3.14) 

( 3 . 1 5 )  

m j 
[qJ/i~_xpeij_ xJk = 1, k = 1 , . . , r - c .  (3.22) 

X T l n q  " = G - «  , 

which can be written as 

r r 

j = l  j = l  

(3.21) 

As P](A:) is a monotonic increasing function passing through the origin ofcoordinates, 
so is lP]- t ( .  ), which implies that its function values have the same sign as its arguments. 
Furthemaore, since Gi(X ) > 0, we may write 

P171(vj/Gj) = pjvj, (3.16) 

where pj is a function of X with the property 

pj(X) > 0 for any X. (3.17) 

Now we can write eq. (3.15) as follows 

r 

VTln~ " = ~ pjv~. (3.18) 
j= l  

Equations (3.17) and (3.18) give 

V T In ~" ~> 0 (3.19) 

with equality if and only if V = 0 r. In this case (i.e. at thermodynamic equilibrium), 
eq. (3.13) leads to 

in ~" - C T In  X = 0 r . ( 3 . 2 0 )  

Multiplication of eq. (3.20) by X T from the left yields, under consideration of (3.6), 
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Equation (3.21) is a necessary condition for V = 0 r to be possible. We now prove that 
(3.21) is even sufficient for the equivalence of steady state and equilibrium. Since ?~ 
fulfills, by definition, eq. (3.6) and all its columns are linearly independent, these 
columns taken as vectors span the subspace kernel (C) being the space of all vectors V 
fulfilling eq. (3.1). These can, therefore, be represented in the form 

V = XZ (3.23) 

with (r - c)-dimensional vectors Z. By multiplying eq. (3.13) by V T from the left 
and inserting (3.23), we obtain, under steady-state conditions, 

{ [  1 ] V ( X ) }  = zT ) tT ln~"  V T IP-1 diag G(X)  (3.24) 

If condition (3.21) is fulfilled, the r.h.s, of (3.24) vanishes so that we may write, 
using eq. (3.16), 

r 

»;v I = 0. (3.2») 
]=1 

This equation implies, due to inequality (3.17), v i = 0 for all j, which completes the 
proof. We formulate the obtalned result in the following theorem. 

THEOREM 1 

For any reaction network endowed with generalized mass action kinetic 
form (2.3), each steady state with no concentration vanishing is identical with a 
thermodynamic equilibrium state, i.e. C V ( X * )  = O n "=* V(X*)  = 0 r (X* > On), 
if and only if either the rank of stoichiometric matrix C equals the number of 
reactions, r, or condition (3.21) is fulfilled. 

3.2. EXAMPLES AND EXPLANATORY REMARKS 

The statement of theorem 1 becomes clearer with the help of the following 
examples. First, we consider a cycle of n monomolecular reactions with the stoichio- 
metric matrix 

C = 

/--1 0 0 . . . 0  1 
1 - 1  0 . . . 0  0 
0 1 - 1  . . . 0  0 
0 0 1 . . . 0  0 

0 0 0 . . . 1  - i  

(3.26a) 
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or, written in a more abstract way using Kronecker 8, 

C ü = -  6 Ü + S i , j +  1 + 8 i ,  18],n , i , j  = 1 , . . , n .  (3.26b) 

Since rank(C) = n - 1, X contains one column which can be chosen to be 

X = (1 1 . . .  1) T (3.27) 

so that eq. (3.22) takes the form 

r 

1--I qi = 1. (3.28) 
y=l 

Equation (3.28) is the well-known Wegscheider condition [3; 4, p. 26].  It was originally 
formulated as a relation among rate constants (cf. eq. (1.1)) in order to conform the 
mass action expression as obtained from chemical kinetics to thermodynamics. For a 
reaction system without external species and having the stoichiometric matrix 

( i  0 ~) C = - 1 0 , (3.29) 
1 - 2  

for example, condition (3.22) takes the form 

2 2 = 
ql q2 q3 1, (3.30) 

which is not a special case of Wegscheider's condition (3.28). Moreover, (3.22) is more 
general than (3.28) inasmuch as the existence of  external species is admitted, which is 
reflected in the replacement of  "real" equilibrium constants qj by apparent constants 

In closed systems, relation (3.21) is always fulfilled since any chemical reaction 
system without external species tends to thermodynamic equilibrium. It can then be 
considered as a test criterion for the accuracy of  measured rate or equilibrium con- 
stants. Relations between equilibrium constants have been given earlier [14, p. 171; 
15, p. 259],  but we are not aware of such a compact and general formulation as that 
in (3.21). 

In equilibrium thermodynamics, the mutual dependences of equilibrium 
constants need not be considered at all if, as is often done, only c = tank(C) reactions 
(called independent reactions) are chosen for investigätion in such a way that their 
corresponding columns in C are linearly independent. In non-equilibrium, the 
dependent reactions cannot be neglected because they affect the temporal system 
behaviour. 
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Typical examples of systems with dependent reactions are networks contain- 
ing cycles characterized by (3.26). In biochemistry, reaction cyctes are of great 
importance (citric acid cycle, glyoxalate cycle, urea cycle, etc. (cf. [16])), but they 
are not composed of monomolecular reactions only. Consider, for instance, the 
cycle formed by the enzymes hexokinase and glucose-6-phosphatase (cf. [16]). If 
X1, X 2 . . . . .  X 6 denote the substances glucose, glucose-6-phosphate, adenosine 
triphosphate (ATP), adenosine diphosphate (ADP), inorganic phosphate (Pi), and 
water, respectively, the topology of this reaction system is given by the matrix 

(i 1) I -1 
- 0 ( 3 . 3 1 )  C =  0 

1 

- 1  

which has full rank. However, if ATP, ADP, Pi, and watet are considered as external 
metaboliyes (as is often done), C reads 

( - 1  1 )  
C = (3 .32)  

1 - 1  

and c < r certainly holds. Systems of reactions representing one and the same trans- 
formation of metabolites catalyzed by several enzymes can be regarded as cycles as 
well. They are characterized by c < r, anyway. Furthermore, the fixation of concen- 
trations, i.e. the conversion of internal species into external ones, can cause c to be 
smaller than r even in acyclic systems. This can be seen by means of the reaction 
sequences 

. / i  P2 
(a) P1 -+ Xx ~ «z" (b) PI -~ X1 , 

ù " "  P3 

where c = 1, r = 2 (a), and c = 1, r = 3 (b). If X is chosen according to eq. (3.7), we 
have 

(a) X = (b) X = 0 . (3.33a,b) 
1 1 

These examples itlustrate the above-mentioned fact that the columns of ?, span the 
space of all vectors V which fulfill eq. (3.1). 

In open systems, eq. (3.21) implies restrictions concerning the concentrations 
Pi which are not always fulfilled. It can then be used as a necessary and sufficient 
condition for detailed balancing. 
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4. Existence, uniqueness, and stability of equilibrium states 

If  c = I", the row vectors o f  C span the whole space N r so that l n~  can be 
represented as a linear combinat ion of  rows o f  C : 

lnq  = C T Y, (4.1) 

with Y E An. If c < r and eq. (3.21) hold, l n ~  must be contained in the kernel of  

X T having dimension c and being spanned by row vectors of  C due to eq. (3.6) and 

t ank(C)  = c. Hence, eq. (4.1) holds also in the case c < r. We choose a concentrat ion 
vector Ä~ to be A 7 = e x p ( Y ) .  It lies in Z~n+ and fulfills, by virtue of  eq. (4.1), the 

equation 

C T In .)V = In ~ ,  (4.2) 

which is equivalent to eq. (3.20) and, hence,  to V ( X )  = 0 r. Thus, X is a vector of  
equilibrium concentrat ions.  

In the case c = n, this equilibrium state is even unique since the n upper 
equations of  vector equat ion (4.2) determine X uniquely. In the case c < n, there 
exist J7 - c  independent  conservation conditions restricting reactant concentrat ions,  
wlüch can be written in the form 

7 X ( t )  = K, (4.3) 

where 7 is an (i7 - c) x n matr ix fulfilling 

7C = 0 n _ e, r (4.4) 

and having tank n - c (cf. [5] ). K denotes an (n - c)-dimensional vector o f  constants. 
Due to eq. (4.3) and the non-negativity of  concentrat ions,  the trajectory X ( t )  

is restricted to a subset ofùqn 

Z = t x E N n : x > ~ O n , T X  = K},  (4.5) 

which is called reaction simplex [1] or concentra t ion polyhedron [5] .  We can assume 
2 to have dimension c since, otherwise, some X i would vanish for all t. We elucidate 

this s ta tement  by means of  an exemplifying reaction having stoichiometric matr ix  

and endowed with the kinetics associated with 

(4.6) 
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O 1 = k 1 X 1 X 2 - k 1 X22 , (4.7) 

which is also considered by Othmer [7]. T can be chosen to be 3' = (1 1) so that the 
reaction simplex is given by X 1, X 2 >~ 0, X~ + X 2 = const. This simplex has dimen- 
sion one unless the conservation sum vanishes, in which case both the concentrations 
vanish as well. As stated in section 2, we exclude all cases with zero concentrations. 
This means no loss of generality if some X i identically vanish (i.e. X i ( t  ) =- 0 for all t) 
due to special values of conservation quantities. In this case, the reactants in question 
can be deleted and one can work in a lower-dimensional phase space. However, this 
case is not the only one characterized by Xi( t )  - 0 for some i. In the above example, 
all states with X~ > 0, X 2 = 0 are stationary and eren equilibrium states ifequilibrium 
is defined in the sense of vanishing rates. Yet, since affinity is not equal to zero, they 
represent "false equilibria" [7] and are not stable. By excluding vanishing concen- 
trations, we circumvent the problem of false equilibria which is, however, worth being 
investigated in more detail in the future. 

Finally, one has to consider the case that some X i vanish non-identically, i.e. 
only for some t. It can easily be shown that this is possible solely for the initial point 
of  time, say t = 0. Since we are interested in the asymptotic time behavior, we can 
restrict the analysis to t > 0, so that the assumption about non-vanishing concentra- 
tions does not imply a loss of generality in this case. 

Returning to the equilibrium vector )(  = exp(Y) ,  we can evaluate the vector K 
belonging to J( using eq. (4.3). Thus, at least for one vector K, an equilibrium state 
does exist. In what follows, we show, with the help of Lyapunov's second method [ 17], 
being a standard technique in chemical kinetics [1 ,2 ,5 ,7 ,13] ,  that for any (n - c ) -  
dimensional vector K allowing positive concentrations, a unique equilibrium vector 
exists. Following Horn and Jackson [1],  we first define a function H ( X ) i n  k~ n by 

?1 

H ( X )  = ~" X i ( l n X  i - l n X -  i - 1), 
i = 1  

(4.8) 

where ~ are the components of X. Obviously, H ( X )  is continuously differentiable 
at least once everywhere in An.: E and H ( X )  are easily seen to be a convex set and a 
strictly convex function, respectively. Therefore, and due to the behavior of H ( X )  
at infinity and in the limit X i --, 0 for some i, H ( X )  can be shown to assume its 
minimum relative to E at a unique point in the interior of E [1], which we denote 
by J((K).  Due to the differentiability of H ( X ) ,  the necessary condition for the 
existence of  a minimum 

grad H ( X )  + 7Tu = O n (4.9) 

must be fulfilled at )(, where v denotes the vector of Lagrangian multipliers by which 
the conservation constraint (4.3) is taken into account. 
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From eq. (4.8) we obtain 

L 

gradH(X) = l n X - l n X .  (4.1 O) 

Multiplying this equation by C T from the left for X = )(, we get, by virtue of eqs. 
(4.21), (4.4), and (4,9), 

C 'r In æ = In ~,  (4.11) 

from which eq. (3.2) with X* = .;~" follows. Thus, the vector «V(K) is an equilibrium 
point for given K. 

Now we define the strictly convex function 

L(X) :  H(X)- H(X), (4.12) 

which has the property I,(2() = 0. It is related to the Gibbs free energy [2]. The time 
derivative of L(X)  along a solution X(t) of (2.2) reads 

B : J£'Tgrad Il(X). (4.13) 

With the help of eqs. (2.2) and (4.9), we get 

B = V TC T ( l n X - l n Ä j ) ,  (4.14) 

which can be written as 

~: .,»,{[d~ag «~,~,].,x, / ~41~, 
using eqs. (3.13) and (4.2). Due to (3.16) and (3.17), we have 

B ~< 0 (4.16) 

with equality if and oilly if X = )((K). Thus, L(X) possesses all properties of a 
Lyapunov function of the differential equation system (2.2) in the interior of E and 
with respect to the singular point J( [17]. Therefore, the equilibrium point J((K) is 
globally asymptotically stable relative to the interior of the considered reaction 
simplex E (i.e. for the given vector K o r  given initial conditions X(0)), and is, there- 
fore, even the unique (true) equilibrium point for given K. The main result of this 
section is stated in the following theorem. 
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THEOREM 2 

If the rate laws of all reactions of a reaction system can be described by (2.3), 
and either the tank of its stoichiometric matrix equals the number of reactions or 
condition (3.21) is fulfilled, there exists, for each vector K of conservation quantities, 
a unique equilibrium state with finite concentrations. This stare is globally asymp- 
totically stable relative to the interior of the reaction simplex corresponding to K. 

5. Imp l i ca t ions  for  quas i - s t eady - s t a t e  a p p r o x i m a t i o n  

The quasi-steady-state approximation (QSSA), which is based on Tikhonov's 
theorem (cf. [18, p. 251 ] ), is frequently employed to simplify the integration of the 
differential equation system (2.2) if it is stift [ 4 , 8 - 1 2 ] ,  which is offen the case, 
particularly in biochemical reaction networks. Roughly speaking, one can distinguish 
two variants of  QSSA. The classical stationary-state hypothesis, which was first 
developed by Bodenstein (cf. [9, p. 50]), is applied to systems with widely different 
reactant concentrations, whereas the second variant, also termed "rapid-equilibrium 
approximation" [4, p. 43],  is based on the normalization ofstrongly separated reaction 
rates and necessitates a linear transformation of variables (theoretical background in 
[8,10,11], applications to biochemical systems in [8,19] ). I fa  separation of concen- 
trations as well as of reaction rates occurs, it is possible to apply both the mentioned 
variants. In enzyme kinetics, for example, steady-state and equilibrium models have 
been derived which correspond to Bodenstein's method and rapid-equilibrium approxi- 
mation, respectively. 

For brevity's sake, we use formulas for the latter type of QSSA only. Follow- 
ing Schauer and Heinrich [11], we renumber the reactions and, accordingly, the 
columns of C such that 

and 

(5.1) 

]uil ~ Iwj[ forall i , /  (5.2) 

hold, where u i and w i are the components of U and W, respectively. Since U and W 
depend on X, one has to indicate in which region of ~Rn+ inequality (5.2) is to hold. 
Since Tikhonov's theorem is formulated for bounded domains D C Nn, it is favorable 
to restrict the validity of (5.2) to such a domain, except for a small neighborhood 
of the submanifold defined by W = 0p (the "slow submanifold"), where p denotes 
the dimension of W. 

Let R be the matrix composed by those columns of C which correspond to 
U, and S the matrix of the remaining columns of C : 
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c = (R s).  (5.3) 

The submatrix S represents, after deletion of all rows containing zeroes only, the 
stoichiometric matrix of the "fast subsystem" [11], also termed "steady-state sub- 
network" [10]. For the following calculations, it is of no importance whether or not 
these rows in S are canceled so that we identify S with the stoichiometric matrix of 
the fast subsystem. 

We normalize ~'/by 

B = H W, (5.4) 

where H is chosen such that 

max [ui[ -~ min Iü,/I (5.5) 
i / 

everywhere in the region of validity of (5.2). Then (2.2) transforms to the singularly 
perturbed system 

2 = R u ( x )  + ± s~,(x).  (5.61) 
tl 

From the premises of Tikhonov's theorem, one can conclude that for the steady-state 
assumption to be justified it is necessary that the differential equation system 

dX 
= SW(X)  (5.7) 

d~- 

has at least one asymptotically stable singular point (corresponding to a stable steady 
state of the fast subsystem), and that the initial concentration values lie in its domain 
of influence. Asymptotic stability is considered within that reaction simplex of the 
fast subsystem which is given by the conservation quantities. These are composed by 
the conservation quantities of the whole reaction system and the so-called "slow 
moieties" or "pool variables" [8,11] obtained by the above-mentioned variable 
transfonnation [10]. 

For a wide class of systems, QSSA can be shown to be applicable using 
theorem 2. If we replace, in eq. (5.7), S, gJ, and r by the symbols C, V, and t, 
respectively, we see that the above-mentioned preconditions for the application of 
QSSA are always fulfilled if the fast subsystem satisfies the generalized Wegscheider 
condition (3.21) or if its stoichiometric matrix has only linearly independent columns. 
The latter requirement is met in many models of biocbemical systems (cf. the exempli- 
fying system in [11] and the model in [19]). In both cases, eq. (5.7)has, for each 
vector of conservation quantities, exactly one singular point which is globally asymp- 
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totically stable, so that any initial point X(0) > O n fies, of course, in its basin of 
attraction. 

The remaining premises of Tikhonov's theorem (continuity of right-hand 
sides of differential equations and existence and uniqueness of trajectories) are always 
fulfilled for equations describing deterministic chemical kinetics. 

The statement that the fast subsystem is in equilibrium holds for /a-~ 0, 
r -+ o~. A comparison of eqs. (5.6) and(5 .7)  shows that r can be considered as a 
stretched time-scale t/tJ. In time-scale t, W = 0p reads 

lim /.t W = 0p, 

which need not imply W = 0p. This explains the fact alluded to in the introduction 
that a subsystem can subsist in equilibrium (which is, in real systems, only a quasi- 
equilibrium, since/3 can be very small but cannot vanish) although a net flux through 
this system exists. The term "equilibrium reaction" often used in biochemistry has 
to be interpreted in this way. One has, however, to bear in mind that "fast reaction" 
and "equilibrium reaction" do not necessarily coincide. 

The variant of QSSA which is suited for systems with widely different concen- 
trations can be investigated in the light of  theorem 2 as weil. Yet the hypotheses of 
this theorem are seldom fulfilled in this case, so that other mathematical tools, e.g. the 
zero deficiency theorem [6] (for other stability theorems, see Clarke [5]), have to be 
employed in order to check whether singular points of fast subsystems are stable. This 
was done, for example, by Battelli and Lazzari [12] concerning steady-state enzyme 
kinetics. 
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